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1 Introduction

Hello, potential physics Ph.D. student! If you are reading these notes, chances
are you are preparing to take the physics GRE subject test (pGRE). This exam,
administered by the Educational Testing Service (ETS), consists of 100 multiple
choice problems in 170 minutes. Students score one point for every correct
answer and lose a quarter of a point for every incorrect answer, so arbitrary
guessing is costly. The raw score out of 100 is converted to a scaled score out of
990, which roughly corresponds to a raw score of 85 or above and a percentile
of 95.

The test is designed to measure the student’s physical intuition and educa-
tion, but in practice it also measures a student’s calculation speed: most stu-
dents who take the test are unable to complete it in the time allowed. Hence,
you do not want to have to waste time on the exam re-deriving formulas and
should try to commit as much of your undergraduate physics education to mem-
ory as possible. In these notes, I will present some of the most prolific formulas
found on the pGRE, along with some general tips for taking the exam. The rest
is in your hands. Good luck!

2 General Advice

These are the best tips I can give to someone preparing for the pGRE.

1. Take the test seriously. ETS isn’t going to give you any extra points
because the name of your undergraduate institution is “Harvard,” “Stan-
ford,” “MIT,” “Princeton,” “Cornell,” etc. The test might not be as dif-
ficult or rigorous as the exams you’re accustomed to, but taking it lightly
is a big mistake (and one that some of the smartest and most talented
undergrads make every year). The pGRE is probably about as important
as the rest of the exams you’ve taken in your undergraduate career com-
bined: treat it as such. If you want to study theoretical physics at one of
these top schools, you should probably shoot for a score of 900 or better.

2. Take every available practice exam, and do so under testing con-
ditions. ETS should mail you a practice booklet when you register for
the pGRE, and you can find a set of four other practice tests on the Ohio
State Physics web page. You should take all five of these exams under
testing conditions (i.e. in 170 minute intervals). As Vince Lombardi said,
“Practice does not make perfect. Only perfect practice makes perfect.”
Don’t waste your time by doing a few practice problems here and there:
approach the practice test in the same manner you approach the real test,
and get accustomed to 170 minutes of furious thought.

3. Start studying early. I started studying for the October physics GRE
subject test the day that I finished the math GRE subject test in April.
This is probably a tad extreme, but you should probably start studying
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at least 2 months before the exam. A good strategy would be to take the
first practice test 2 months before the exam to get an idea of what you
need to learn, the second practice test 1 month before the exam, the third
2 weeks before the exam, the fourth 1 week before the exam, and the fifth
2 days before the exam.

4. Set a consistent sleep schedule of at least 8-9 hours per night.
Anyone who has taken Psych 101 at Cornell with Professor James Maas
can tell you that the average undergrad needs 9.25 hours of sleep per night
to be well-rested. Furthermore, it is critical to develop a consistent sleep
schedule. This can be a problem for many aspiring physics grad students
because the pGRE is administered at 8:30am, so you will probably have
to wake up at 7:30am or so. For the week before the exam, you should
really try to get on an 11pm to 7:30am sleep schedule (as tough as that
might be for a physics party animal such as yourself). Whatever you do,
don’t stay up late studying for the exam.

5. Take your own, handwritten notes. Actually writing formulas down
improves your ability to remember them. While the notes presented here
are nice as a guide, you should create your own notes, even if they are just
paraphrases of mine.

6. Use dimensional analysis. A decent fraction of the problems on the
pGRE can be solved using dimensional analysis. Before starting a 5-
minute calculation, pause to see if you can determine the answer based
solely on its dimensionality.

3 Classical Mechanics (20%)

Newton’s laws:

F = ma, (1)

F12 = −F21. (2)

Newton’s gravitational law:

~F =
GMm

r2
r̂ (3)

where r is the distance between two objects of mass M and m, respectively, and
G is the gravitational constant. On earth, g = GM

r2 = 9.8m · s−2. Kepler’s laws
of planetary motion:

1. The orbit of every planet is an ellipse with the Sun at one of the two foci.

2. A line joining a planet and the Sun sweeps out equal areas during equal
intervals of time.
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3. The square of the orbital period T of a planet is directly proportional to
the cube of the semi-major axis a of its orbit.

In mathematical terms, the third law is

T 2 ∝ a3. (4)

This can be seen, for circular motion, from

GMm

r2
=
mv2

r
= mω2r =

mr(2π)2

T 2
. (5)

An elliptical orbit may be parametrized by the radius r and angle θ by

r =
p

1 + ε cos θ
, (6)

where ε is the eccentrity of the orbit.

ε = 0 ⇒ circle
ε < 1 ⇒ ellipse
ε = 1 ⇒ parabola
ε > 1 ⇒ hyperbola.

(7)

The relation between escape velocity ve and circular orbit velocity vc:

ve =
√

2vc. (8)

For a spring of spring constant k,

~F = −k~x, (9)

V =
1
2
kx2 =

1
2
mω2x2. (10)

Thus, ω =
√

k
m , and the solution to the equation of motion is harmonic motion,

x(t) = A sin(ωt+ φ). (11)

For springs of spring constant ki in parallel, the spring constants sum,

k =
∑

ki. (12)

For springs in series, the reciprocals sum,

1
k

=
∑ 1

ki
. (13)

If two free masses m1 and m2 are connected by a spring k, we use the reduced
mass,

µ =
m1m2

m1 +m2
, (14)
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so

ω =

√
k

µ
. (15)

Note that if m1 = m2 = m, then µ = m/2.
The Lagrangian L of a (classical) system is

L = T − V (16)

where T (qi, q̇i is the kinetic energy (T = 1
2mẋi

2, in cartesian coordinates) and
V (qi) is the potential energy. The Euler-Lagrange equations are,

d

dt

∂L

∂q̇i
=
∂L

∂qi
(17)

These give rise to the equations of motion. If our system is multidimensional,
we get one equation of motion for each coordinate xi. The energy of the system
is defined as,

E = (
∑
i

∂L

∂q̇i
q̇i)− L. (18)

Furthermore, one can show that the Euler-Lagrange equation yields,

dE

dt
= −∂L

∂t
(19)

Note that if L has no explicit time dependence, ∂L∂t = 0, then energy is conserved
in the system. The Lagrangian is related to the Hamiltonian H of the system
by,

H = (
∑
i

piqi)− L. (20)

Here, qi is the canonical coordinate, and pi = ∂L
∂q̇i

is the conjugate canonical
momentum. Note that if ∂L

∂qi
= 0, then pi is conserved by the Euler-Lagrange

equation. After computing the Hamiltonian in terms of qi, q̇i, and pi, you should
be able to substitute pi in for q̇i and get H = H(qi, pi). Hamilton’s equations
are,

q̇i =
∂H

∂pi
, (21)

ṗi = −∂H
∂qi

. (22)

We may define the Poisson bracket between two functions f(qi, pi, t) and g(qi, pi, t)
by

{f, g} =
∑
i

∂f

∂qi

∂g

∂pi
− ∂g

∂qi

∂f

∂pi
. (23)

With this, Hamilton’s equation generalizes to,

d

dt
f = {f,H}+

∂f

∂t
. (24)
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Geometry I
Solid disc/cylinder, radius R 1

2MR2

Hollow hoop/cylinder, radius R MR2

Solid sphere, radius R 2
5MR2

Hollow sphere, radius R 2
3MR2

Table 1: Moments of inertia for some common objects of mass M . Note that the
axes of the disc/hoop/cylinder are the ones through the center of ring/cylinder.

The moment of inertia I for a rigid body around an axis is

I =
∑

miR
2
i , (25)

where the sum is over all the point masses mi and Ri is the distance from the
mass to the axis. The kinetic energy for a body rotating about its center of
mass is

T = Trotation + Ttranslation =
1
2
Iω2 +

1
2
mv2, (26)

where ω is the angular speed of rotation. The angular momentum of a rotating
body is

L = Iω. (27)

The moments of inertia for some common geometries are shown in Table 1.
In an elastic collision, both total energy and total momentum are conserved.

If the objects have initial velocities v1
i and v2

i along the x-direction, then they
will have final velocities v1

f and v2
f that satisfy,

v1
i − v2

i = v2
f − v1

f . (28)

In an inelastic collision, such as when two globs collide and stick together, only
total momentum is conserved, energy is not.

For an object sliding on a surface with friction, the force of friction if pro-
portional to the normal force exerted orthogonal to the surface,

Ffr = µFN . (29)

If the object is not moving, use the coefficient of static friction, µ = µS . If it is
moving, use the coefficient of kinetic friction, µK . In general, µS > µK .

4 Electromagnetism (18%)

Under Franklin’s model of electricity, electric charge is always conserved. There
are 2 kinds of charge, positive and negative, which are quantized. The force
obeys an inverse-square law, F ∝ 1

r2 .
In conductors, electric charges move freely. Insulators do not readily trans-

port charge. Semiconductors are in-between.
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Coulomb’s law:
F =

kQq

r2
, (30)

where k = 1
4πε0

and ε0 is the permittivity of free space. Electric field from point
charge:

E = F/q =
kQ

r2
r̂. (31)

Total E-field = vector sum of E-fields,

~ETot =
∑

~Efields. (32)

This becomes an integral for a continuous charge distribution,

~E = k

∫
dq

r2
r̂ = k

∫
ρdV

r2
r̂. (33)

Rules for drawing E-field lines:
1) Begin on positive charges, end at negative–can begin/end at infinity if

the total net charge 6= 0.
2) No two field lines can cross or touch.
Electric flux through a surface S:

Φ =
∫
S
~E · d ~A

= EA , if the electric field and surface are orthogonal
= EA cos θ , if θ is the angle between the electric field and surface normal.

(34)
For a closed surface S, we have Gauss’s Law:

Φ =
∫
S

~E · d ~A =
qin
ε0

= 4πkqin, (35)

where qin is the charge enclosed by the surface.
A conductor in electrostatic equilibrium satisfies:

1. ~E = 0 inside the conductor.

2. Any charge resides on the surface.

3. The ~E field just outside the surface is perpendicular to the surface with
magnitude q/A

ε0
= ρ

ε0
.

4. Charge accumulates at sharp points (a.k.a. points with the smallest radius
of curvature).

Change in potential energy for a particle of charge q0 moving from point A
to point B in an electric field ~E(~x):

∆U = −q0

∫ B

A

~E · d~s. (36)
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Here, the d~s implies that this is a path integral. For the same process, the
change in electrostatic potential:

∆V =
∆U
q0

= −
∫ B

A

~E · d~s. (37)

If the E-field is uniform, ~E(~x) = ~E0,

∆V = ~E0 · ~d, (38)

where ~d is the displacement vector.
An equipotential surface is a surface with points of constant V . The E-

field lines are always perpendicular to these equipotential surfaces. For a point
charge q moving around near another point charge Q:

F =
kQq

r2
. (39)

The potential energy:

U =
kQq

r
. (40)

The field generated by Q:

E =
kQ

r2
. (41)

The electrostatic potential due to Q:

V =
kQ

r
. (42)

More generally,
~E = −~∇V. (43)

For a spherical charge distribution, the radial component of the electric field is
given by,

Er = −∂V
∂r

. (44)

The electrostatic potential due to several different charges is a sum,

V = k
∑
i

qi
ri
. (45)

In the continuous limit, this becomes an integral

V = k

∫
dq

r
. (46)

A grounded plane induces an “image” charge, which is opposite the actual charge
in both position and sign. For instance, if the yz-plane is grounded and there
is a charge Q at position (1, 0, 0), then an image charge −Q will be produced
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at (−1, 0, 0). A charged particle moving in this space will feel the electric field
from both the actual charge and the image charge.

The electric displacement field in a material:

D = ε0E + P = ε0(1 + χ)E ≡ ε0κE, (47)

Here, κ is called the “relative permittivity” or “dilectric constant,” and P is the
polarization,

P = ε0χE, (48)

where χ is the electric susceptibility.
For a (parallel-plate) capacitor of capacitance C, with charge Q on each

plate, voltage drop V ,
Q = CV. (49)

Hence, the electric field inside the parallel-plate capacitor is

E =
V

d
=

Q

Cd
. (50)

For capacitors Ci in parallel, the capacitances sum:

C =
∑

Ci. (51)

For capacitors in series, their reciprocals sum:

1
C

=
∑ 1

Ci
. (52)

The work done in charging a capacitor = the potential energy U stored in the
capacitor, which is given by,

U =
1
2
CV 2 =

Q2

2C
=

1
2
QV. (53)

When a dielectric material is inserted between the plates of a capacitor, the
capacitance is multiplied by a factor κ = dielectric constant,

Cdielectric = κC0. (54)

When two charges of charge q, −q, respectively, are separated by a distance
2a, the electric dipole moment is given by,

~p = 2q~a, (55)

where the vector ~a points from the negative charge to the positive charge. The
torque on an electric dipole in a uniform E-field is,

~τ = ~p× ~E. (56)

The potential energy of the electric dipole is,

U = −~p · ~E. (57)
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Geometry Capacitance
Isolated sphere, charge Q, radius R C = 4πε0R

Parallel plate capacitor, area A, separation d C = ε0
A
d

Table 2: Geometry and Capacitance.

The capacitance for two important geometric setups can be found in Table 2.
With a dielectric, κ > 1 always, and

Edielectric =
1
κ
Efree, (58)

Vdielectric =
1
κ
Vfree. (59)

The bound charge density on plates is related to the free charge density by

ρbound = −(
κ− 1
κ

)ρfree. (60)

Gauss’s Law with dielectrics:
Φ =

Q

κε0
. (61)

The electric current I in a conductor:

I =
dQ

dt
= nqvdA, (62)

where n is the number density of charge carriers, q is the charge per carrier, vd
is the drift velocity, and A is the cross-sectional area of the conductor (usually
a wire). The current density:

J = nqvd =
I

A
. (63)

Current density is proportional to the E-field in the conductor:

~J = σ ~E, (64)

where σ is the conductivity.

Resistivity = ρ =
1
σ
. (65)

A material is said to obey Ohm’s Law if and only if its conductivity σ is inde-
pendent of the applied field. The resistance R of a conductor is related to the
current I through it and the voltage drop V across it,

V = IR. (66)
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Resistivity is further related to resistance,

R = ρ
l

A
(67)

where l is the length of the conductor and A is the cross-sectional area of the
conductor. Resistivity is linearly dependent upon temperature:

ρ = ρ0[1 + α(T − T0)]. (68)

Here, α is called the temperature coefficient of resistivity.
In the classical model of electron conduction in a metal, electrons∼molecules

of a gas:

~vd =
e ~E

m
τ, (69)

where τ is the average time bectween collisions with atoms of the metal, e is
the electron charge, and m is the electron mass. The resistivity ρ obeys

ρ =
m

ne2τ
. (70)

Here, n is the number density of free electrons.
The power dissapated by a resistor:

P = IV = I2R =
V 2

R
. (71)

The EMF of a battery is the voltage across terminals of the battery when the
current is 0. For resistors in series, resistances Ri sum,

R =
∑

Ri. (72)

For resistors in parallel, reciprocals sum,

1
R

=
∑ 1

Ri
. (73)

Note that this is opposite to the rule for capacitors.
Kirchoff’s Rules for circuits:

1. The sum of the currents going into a junction = the sum of the currents
coming out of the junction.

2. The sum of potential differences across any closed loop = 0.

If a capacitor (capacitance C) is charged with a battery of EMF E through
a resistance R, the charge q on the capacitor and the current I in the circuit
vary according to,

q(t) = Q[1− e− t
RC ], (74)

I(t) =
E
R
e−

t
RC . (75)
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Here, Q = CE is the maximum charge on the capacitor. The quantity RC is
often called the time constant of the circuit. If the capacitor with charge Q is
discharged through a resistance R,

q(t) = Qe−
t

RC , (76)

I(t) = I0e
− t

RC , (77)

where I0 = Q
RC is the initial current.

Force on a charged particle moving with velocity ~v in a magnetic field B:

~F = q~v × ~B. (78)

Force on a wire or other conductor of length L carrying current ~I in a uniform
magnetic field:

~F = L(~I × ~B), (79)

or, in infinitesimal form,
d~F = Id~s× ~B. (80)

Magnetic moment µ of a current loop carrying a current I:

~µ = I ~A. (81)

Here, ~A points through the center of the loop in a direction determined by the
right-hand rule; put your right thumb along the direction of the current, and
curl your fingers through the center of the hoop. The direction they point is the
right (no pun intended) one.

Torque on a current loop in a magnetic field:

~τ = ~µ× ~B. (82)

A charged particle of charge q, mass m in a uniform magnetic field B with
an intial velocity v perpendicular to the field will henceforth experience circular
motion with radius

r =
mv

qB
. (83)

Hence,

ω =
qB

m
, (84)

since ~v = ~ω × ~r.
The Biot-Savart Law:

d ~B = km
Id~s× r̂
r2

= km
Id~s× ~r
r3

. (85)

km = µ0/4π = 10−7 Tesla m A−1. µ0 is the permeability of free space. In
integral form:

~B =
µ0I

4π

∫
d~s× r̂
r2

. (86)
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Given two parallel wires separated by a distance a, each carrying a current Ii,
the force per unit length f between the wires is

f = µ0
I1I2
2πa

. (87)

If the currents are in the same direction, the force is attractive. If they are in
opposite directions, the force is repulsive.

Ampere’s Law: ∮
~B · d~s = µ0I(+µ0Id). (88)

Here, the term in parentheses is Maxwell’s correction term, and Id = ε0
dΦE

dt .
The loop around which we are integrating should be taken to encircle the
wire/conductor of interest. For an infinitely long solenoid, this gives an interior
magnetic field of,

B = µ0In (89)

where n = N/l is the number of turns per unit length. Outside the infinitely
long solenoid, the magnetic field vanishes.

For a long, current-carrying wire of radius R,

B = µ0I
1

2πr , r ≥ R
= µ0Ir

1
2πR2 , r < R.

(90)

Magnetic flux through a surface:

ΦB =
∫
S

~B · ~A. (91)

For uniform ~B, planar ~A,
ΦB = BA cos(θ). (92)

For a closed surface, Gauss’s law for magnetism:

ΦB =
∫
S

~B · ~A = 0. (93)

This is assuming that there are no magnetic monopoles in nature, which should
be your working assumption for the pGRE.

Given a magnetic field B0 and a material, the magnetic field in the material
is:

B = B0 +Bm = B0 + µ0M = µ0(H +M), (94)

where H is the magnetic field strength and M is the magnetization of the
substance. For para/dia-magnetic materials,

M = χH, (95)
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where χ is the magnetic susceptibility. χ < 0 for diagmagnetic materials, χ >
0 for paramagnetic materials, and χ � 1 for ferromagnetic materials. The
magnetic permeability µm is defined according to

µm = µ0(1 + χ). (96)

Faraday’s Law: ∮
~E · d~s = E = −dΦB

dt
. (97)

The minus sign in this equation is so important that it gets a name of its own:
Lenz’s law. E is the EMF produced in the loop of wire by the time-varying
magnetic flux through it. For a bar of length l moving in a magnetic field B
with velocity v perpendicular to B, a motional EMF is produced,

E = −Blv. (98)

The Lorentz Force Law:
~F = q( ~E + ~v × ~B). (99)

Maxwell’s Equations: ∫
~E · d ~A =

Q

ε0
(100)∫

~B · d ~A = 0 (101)∮
~E · d~s = −dΦB

dt
(102)∮

~B · d~s = µ0I + ε0µ0
dΦE
dt

. (103)

The EMF through an inductor of inductance L:

E = −LdI
dt
. (104)

For a coil of wire with N turns carrying current I with magnetic flux ΦB ,

L =
NΦB
I

. (105)

For a solenoid in particular,

L =
µ0N

2A

l
, (106)

where A is the cross-sectional area and l is the length of the solenoid.
When the battery is turned on in an L-R circuit:

I(t) =
E
R

(1− e−t/τ ) , τ = L/R. (107)
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When the battery is turned off:

I(t) =
E
R
e−t/τ . (108)

The energy stored in the magnetic field of an inductor:

U =
1
2
LI2. (109)

The energy per unit volume in the B-field region of the inductor:

uB =
B2

2µ0
. (110)

The current and charge of an LC-circuit oscillate in time:

Q(t) = Qmax cos(ωt+ φ) (111)

I(t) = −ωQmax sin(ωt+ φ). (112)

Here, ω = 1√
LC

and the phase φ depends upon the initial state of the circuit.
The energy U stored in an LC-circuit:

U = UC + UL =
Q2

max
2C

cos2(ωt+ φ) +
LI2

max
2

sin2(ωt+ φ). (113)

Note that U is constant in time. In an RLC-circuit, we get damped harmonic
motion for I, Q.

In AC-circuits,
E = Vmax sin(ωt). (114)

If only a resistor, I is in phase with V , and

Irms = Imax/
√

2, (115)

Vrms = Vmax/
√

2. (116)

For RLC in series, inductive reactance χL = ωL, capacitive reactance χC = 1
ωC ,

impedence
Z =

√
R2 + (χL − χC)2. (117)

Voltage and current are out of phase by φ, where

tanφ =
χL − χC

R
. (118)

The average power produced by the generator of RLC AC-circuit is

Pavg = IrmsVrms cosφ = I2
rmsR, (119)

and the energy is dissipated as heat in the resistor. For this general RLC circuit,

Irms =
Vrms
Z

. (120)
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The current in the RLC AC-circuit reaches a maximum at the resonant fre-
quency,

ω = ω0 =
1√
LC

. (121)

Electromagnetic waves obey the wave equation (in 1-D),

∂2E

∂x2
=

1
c2
∂2E

∂t2
, (122)

∂2B

∂x2
=

1
c2
∂2B

∂t2
. (123)

Thus, the solutions are

E = Emax cos(kx− ωt), (124)

B = Bmax cos(kx− ωt). (125)
The speed of light is related to µ0 and ε0 by

c =
1

√
µ0ε0

. (126)

Also,

c =
|E|
|B|

. (127)

And,

c = νλ =
ωλ

2π
= ω/k. (128)

The rate of flow of energy corssing a unit area is given by the Poynting vector,

~S =
1
µ0

~E × ~B. (129)

Radiation pressure:

P =
|S|
c
. (130)

Furthermore,

Sav =
EmaxBmax

2µ0
. (131)

At cavity walls,
E‖ = B⊥ = 0. (132)

During reflection by a conducting surface, the E-field gets a shift of π, but the
B-field does not.

The characteristic impedence of a transmission line is given by,

Z0 =

√
L

C
, (133)

where L is the inductance per unit length and C is the capacitance per unit
length. The speed of the wave on this transmission line is given by,

c =
1√
LC

. (134)
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5 Optics and Waves (9%)

Waves propagate in the direction orthogonal to the wave fronts. When light
hits a surface, it may be:

1. Partially or totally reflected.

2. Scattered in random directions.

3. Partially transmitted by refraction.

4. Partially absorbed in either media.

Specular reflection is the name for regular, geometric reflections. Diffuse is the
name for irregular reflections from jagged surfaces. We concentrate on specular
reflections.

Law of reflection: angle of incidence = angle of reflection. These angles are
measured from the normal to the surface of reflection. Index of refraction:

n ≡ c

v
. (135)

Here, c is the vacuum speed of light and v is the speed of light in the medium.
Note that n ≥ 1 for all materials, and nair ≈ 1. Snell’s Law relates the angle of
incidence and the angle of refraction:

ni sin θi = nf sin θf . (136)

Here, θi, θf denote the initial and final angles with respect to the surface normal,
respectively. ni and nf denote the indices of refraction for the initial and final
materials, respectively. Note that if

ni sin θi
nf

> 1, (137)

then no value of θf will satisfy Snell’s Law. In this case, we get evanescent
waves leaking into the final region. This phenomenon is called “total internal
reflection.”

The variation of refractive index n with wavelength λ is called dispersion.
In general, as λ increases, n decreases slightly. This is why we see rainbows.

Concave and convex mirrors have different properties, as do concave and
convex lenses. For the convex mirror, the image is virtual, upright, and smaller
than the object. Think “objects in mirror are closer than they appear.” For
concave mirrors, the image is real, inverted, and smaller if you are behind the
focal point and virtual, upright, and enlarged if you are closer than the focal
point (see Figure 1). For both concave and convex spherical mirrors, the focal
length (distance from the mirror to the point where light rays focus) is half the
radius of curvature of the mirror. The mirror equation for spherical mirrors:

1
f

=
1
dO

+
1
di
, (138)
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where f is the focal length, d0 is the object distance, and di is the image distance.
The magnification equation:

M =
hi
hO

= − di
dO

, (139)

where hi is the image height and hO is the object height. The sign convention
is:

• dO > 0 if object is in front (real).

• dO < 0 if object is in back (virtual).

• di > 0 if image is in front (real).

• di < 0 if image is in back (virtual).

• f > 0 for concave.

• f < 0 for convex.

• M > 0 for upright image.

• M < 0 for inverted image.

We will soon see that the sign conventions are different for lenses.
For a lens of diameter D, focal length f , the “f-number” or “relative aper-

ture” is given by,

f-number =
f

D
. (140)

Increasing f-number means increasing light-gathering power. The “numerical
aperture” is given by

n.a. = n sinα, (141)

where n is the refractive index of the medium between the object and the lens
and α is the half-angle of the limiting ray. The image brightness is inversely
proportional to both the square of the f-number and the square of the numerical
aperture. For a thin lens,

1
f

= (n− 1)
(

1
R1
− 1
R2

)
. (142)

Here, f is the focal length, n is the index of refraction of the lens, R1 is the
radius of curvature for the lens nearest the object, R2 is the radius of curvature
for the lens farther from the object. Analogously to the mirror equation,

1
dO

+
1
di

=
1
f
. (143)

But the sign conventions have changed:

• dO > 0 if object is in front (real).
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Figure 1: Convex (top left) and concave mirrors. Note the position of the image
relative to the object for each case. Source: Wikipedia.
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Figure 2: Convex (top) and concave (bottom) lenses. Note
the position of the image relative to the object for each case.
Source: http://physics20p1.blogspot.com/2011 12 01 archive.html and
http://images.tutorvista.com/content/refraction-light/.

• dO < 0 if object is in back (virtual).

• di > 0 if image is in back (real).

• di < 0 if image is in front (virtual).

• R1 > 0 if center of lens is in back.

• R1 < 0 if center of lens is in front.

• R2 > 0 if center of lens is in back.

• R2 < 0 if center of lens is in front.

Rather than trying to remember all of these sign conventions, it is probably
easier to remember the images of Figure 2. When two thin lenses are in contact,

1
f

=
1
f1

+
1
f2
. (144)

When light is (at least approximately) perpendicularly incident on a medium,
the fraction of light reflected is,

R =
(
n1 − n2

n1 + n2

)2

, (145)
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and the fraction of light transmitted is,

T = 1−R =
4n1n2

(n1 − n2)2
. (146)

Here, n1 is the index of refraction of the original medium, n2 is the index of
refraction of the final medium. If light incident on a sufrace is polarized in such
a way that its E-field is in the plane of the path formed by the incident and
reflected ray (p-polarized), then there exists an angle of incidence θB for which
the reflection coefficient Rp = 0 and all of the light is transmitted. θB is called
Brewster’s angle. No such Brewster’s angle exists if the incident material is a
metal or semiconductor.

The wave equation:
∂2u

∂t2
= c2∇2u. (147)

The solution to the 1-dimensional case is

u(x, t) = A sin(kx− ωt) +B cos(kx− ωt), (148)

where ω/k = c. When two waves on a string meet each other, the resulting
amplitude is the sum of the amplitudes for each individual wave. Two sine
waves going in the same direction give interference. For two waves sin(kx−ωt)
and sin(kx − ωt + φ), we get constructive interfence for φ = 0 (in-phase) and
destructive interference for φ = π (out-of-phase). Two sine waves heading in
opposite directions give standing waves,

u = A sin(kx− ωt) +A sin(kx+ ωt) = 2A sin(kx) cos(ωt). (149)

For these standing waves, the points of 0 amplitude (kx = nπ) are called “nodes”
and the points of maximum amplitude (kx = π/2 + nπ) are called “antinodes.”
Two waves traveling in the same direction with different frequencies but the
same speed give “beats,”

u(x, t) = A sin(k1x− ω1t) +A sin(k2x− ω2t)
= 2A cos((k1− k2)x/2− (ω1 − ω2)t/2) sin((k1 + k2)x/2− (ω1 + ω2)t/2).

(150)
The “beat frequency” is the difference of the individual frequencies,

νbeat = ν1 − ν2. (151)

Characteristic impendence Z of a string:

Z = µc, (152)

where µ is the mass per unit length of the string and c is the wave speed. When
a wave on the string meets a hard, fixed boundary, there is a phase shift of π.
When it meets a soft, free boundary, there is no phase shift (see Figure 3).

When a wave moves from a place of low density to high density, the reflected
wave experiences a π phase shift. The transmitted wave feels no shift. When
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Figure 3: Fixed (left) and free (right) boundary. Note the phase shift in the
first case. Source: http://snvphysics.blogspot.com/2011/03/waves.html.

Figure 4: Waves move from less to more dense regions (left) and more to
less dense regions (right). Note the phase shift in the first case. Source:
http://www.physicsclassroom.com/class/waves/u10l3a.cfm.

a wave moves from high density to low density, neither the reflected nor the
transmitted wave feels a π phase shift (see Figure 4). The amplitudes of the
waves are related by

Aincident = Atransmitted −Areflected. (153)

The sign convention (see Figure 4) is + for above, − for below.
For single-slit diffraction, minima occur at,

d sin θn = nλ , n = 1, 2, 3, ..., (154)

where d is the width of the slit, θn is the angular location of the minima, and λ
is the wavelength of the light. For the double-slit experiment, maxima occur at

d sin θn = nλ , n = 0, 1, 2, ..., (155)
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where d is now the distance between slits. This equation also applies to diffrac-
tion gratings. For Bragg diffraction,

2d sin θ = λ. (156)

For a film of thickness t,

2t = λ/2⇒ constructive interference, (157)

2t = λ⇒ destructive interference. (158)

For a telescope,

Magnetization =
fO
fe
, (159)

where fO is the focal length of the objective lens and fe is the focal length of the
eyepiece. The distance between the objective lens and the eyepiece is fO + fe.
The aperture formula:

θ = 1.22λ/d. (160)

Here, θ is the angular aperture, d is the diameter of the lens, and λ is the
wavelength.

The E-field for a light wave traveling in the z-direction can be written as,

~E(~r, t) = (Ax cos(kz − ωt), Ay cos(kz − ωt+ φ), 0). (161)

If φ = 0, π, the light is linearly polarized, and the direction depends on the
amplitudes, Ax, Ay. If φ = π/2,−π/2 and Ax = Ay, the light is circularly
polarized. Otherwise, the light is elliptically polarized. A polarizer allows only
certain polarizations of light to pass through. The intensity I of the wave
emerging from the polarizer is related to the incoming intensity I0 and the
angle θ between polarization and polarizer by,

I = I0 cos2 θ. (162)

If the incoming light is unpolarized, I = I0/2. The B-field is perpendicular to
both the direction of propagation and the E-field.

The Doppler effect for sound is,

ωobs = ωem

(
v + vr
v + vs

)
. (163)

Here, v is the speed of sound, vr is the speed of the receiver, and vs is the speed of
the source. The sign convention can be determined by remembering that moving
closer corresponds to a blueshift (greater bserved frequency) and moving apart
corresponds to a redshift (lesser observed frequency). Note that a blowing wind
doesn’t affect vr or vs, since the time of propagation for consecutive pulses is
not changing with time.
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Phase velocity is the speed of the wave. Group velocity is the speed of the
wave packet. Phase velocity:

vphase =
ω

k
. (164)

vgroup =
dω

dk
. (165)

For waves on a string, vphase = vgroup. For water waves, vphase = 2vgroup.
For the wavefunction of a free particle in quantum mechanics, vphase = 1

2vgroup,
and vgroup is the classical velocity of the particle. For de Broglie waves, the de
Broglie-Einstein wave equation gives vphasevgroup = c2.

6 Thermodynamics and Statistical Mechanics (10%)

An equilibrium state is one in which all bulk physical properties are uniform
throughout the system and don’t change with time. State functions are functions
that take unique values at each equilibrium state. Adiathermal = adiabatic =
there is no interaction between systems. Diathermal = there is a thermal inter-
actions between systems. Thermal equilibrium is transitive (i.e. A ∼ B, B ∼ C
implies A ∼ C). Thermodynamic equilibrium means thermal equilibrium, me-
chanical equibrium, and chemical equilibrium.

Isotherms are surfaces of constant T . For an ideal gas,

PV = nRT, (166)

so isotherms are hyperbolas. A quasistatic process is one that passes through
a series of equilibrium states. Reversible processes are quasistaic processes for
which no dissipative forces like friction are present.

Bulk modulus:
K ≡ −V (

∂P

∂V
)T . (167)

Volume thermal expansivity:

β ≡ 1
V

(
∂V

∂T
)P . (168)

Linear expansion coefficient:

α ≡ 1
L

(
∂L

∂T
)F . (169)

Here, F is the tension. In general, β = 3α. Young’s Modulus:

Y ≡ L

A
(
∂F

∂L
)T . (170)

Compressibility:

κ =
1
K
. (171)
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Force is related to pressure and area by F = PdA, so

dW = −PdV (172)

for a reversible process. Thus, the total work done on a system is,

W = −
∫ V2

V1

PdV. (173)

The adiabatic free expansion is not reversible, and there is no work done on the
system and no change in entropy. For a wire:

dW = Fdx. (174)

The first law of thermodynamics:

∆U = W +Q, (175)

where U is the internal energy of the system, W is the work done on the system,
and Q is the heat added to the system. For a reversible process,

dU = dQ− PdV. (176)

The heat capacity:
C = lim

∆T→0
Q/∆T = dQ/dT. (177)

The specific heat c = C/m. CV is the heat capacity at constant volume,

CV = dQV /dT = (
∂U

∂T
)V . (178)

CP is the heat capacity at constant pressure,

CP = dQP /dT = (
∂H

∂T
)P . (179)

Here, H = U + PV is the enthalpy. γ is defined by,

γ =
CP
CV

> 1. (180)

For an ideal gas,
CP = CV + nR. (181)

For a monotomic ideal gas,

U =
3
2
nRT , CV =

3
2
nR , γ =

5
3
. (182)

For an adiabatic free expansion,

W = 0 , Q = 0 , ∆U = 0. (183)
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Figure 5: The Carnot cycle. Source: http://hyperphysics.phy-
astr.gsu.edu/hbase/thermo/carnot.html.

For an ideal gas, U = U(T ) is a function of temperature only. In reality, all
gases cool slightly during expansion, due to intermolecular attraction potential
energy increasing with expansion. For an adiabatic,

PV γ = const. (184)

For a Van der Waals gas,

(P +
a

v2
)(V − nb) = nRT, (185)

where a and b are constants and v = V/n is the molar volume.
Figure 5 depicts the Carnot cycle. The top and bottom curves are isotherms

in which heat enters at temperature TH and exits and temperature TC , respec-
tively. The side curves are adiabatics. The work done is the area bounded by
the four curves. The efficiency of the engine:

η =
W

QH
= 1− QC

QH
= 1− TC

TH
. (186)

The second law of thermodynamics says that 100% efficiency is impossible.
More precisely, it is impossible to construct a device that, operating in a cycle,
will produce no effect other than the extraction of heat from a single body
at uniform temperature and perform an equivalent amount of work. Carnot’s
theorem says that the Carnot engine is the most efficient engine between any
two reservoirs. The heat entering in an isotherm is,

Q = nRT ln(
Vend
Vstart

). (187)
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Running the Carnot cycle backward gives a refrigerator with efficiency,

ηR =
QC
W

=
QC

QH −QC
=

TC
TH − TC

. (188)

The efficiency of a heat pump is,

ηH =
QH
W

=
QH

QH −QC
=

TH
TH − TC

. (189)

The Clausius equation: ∮
dQ

T0
≤ 0. (190)

Here, T0 is the temperature of the auxiliary reservoir, and equality holds if and
only if the cycle is reversible. Change in entropy is defined by,

∆S ≡
∫ f

i

dQR
T

, (191)

where the path is reversible. For any reversible process,

dQR = TdS. (192)

For an isothermal free expansion,

∆S = nR ln(
Vf
Vi

). (193)

In general,
dQ

T
≤ dS, (194)

and equality holds if and only if the process is reversible. For a thermally
isolated system,

∆S ≥ 0, (195)

with equality holding if and only if the process is reversible. The central equation
of thermodynamics:

TdS = dU + PdV, (196)

which holds for a reversible process. For an ideal gas, of molar entropy s,

s = cV lnT +R ln v + s0. (197)

In general,
S = kB ln Ω, (198)

where kB is Boltzmann’s constant and Ω is the thermodynamic probability, or
the number of microstates giving rise to this macrostate. The specific heat
capacity in terms of the entropy is,

CV = T (
∂S

∂T
)V , (199)
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CP = T (
∂S

∂T
)P . (200)

The Helmholtz function:
F = U − TS. (201)

For a process in which the end point temperatures are the same as the surround-
ings, the maximum work obtainable equals the decrease in F . F at a minimum
is the condition for thermodynamic equilibrium for a system held at constant
volume. Gibbs function:

G = H − TS. (202)

G at a minimum is the condition for thermodynamic equilibrium for a system
in contact with a heat and pressure reservoir. For a chemical reaction at tem-
perature T0,

∆H − T0∆S ≤ 0. (203)

Maxwell’s relations:
(
∂V

∂S
)P = (

∂T

∂P
)S , (204)

(
∂S

∂V
)T = (

∂P

∂T
)V , (205)

−(
∂S

∂P
)T = (

∂V

∂T
)P , (206)

−(
∂T

∂V
)S = (

∂P

∂S
)V . (207)

These can be remembered by going around the wheel twice in opposite directions
from different starting points,

− S
P V

T
(208)

The mean free path of gas molecules is

l =
1

πd2nv
√

2
, (209)

where d is the diameter of the molecule and nv is the number density. The
collision frequency is, √

2πd2nv =
v̄

l
, (210)

where v̄ is the average speed. The pressure exerted by N molecules of an ideal
gas is,

P =
2
3
N

V
(
1
2
mv̄2). (211)

The temperature is,
3kBT

2
= (

1
2
mv̄2). (212)
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The partition function:

Z =
∑
j

gje
−

Ej
kBT , (213)

where the sum runs over all microstates and gj is the degeneracy of the jth
microstate. The probability of being found in state j is,

Pr(j) =
gje
−

Ej
kBT

Z
. (214)

The pressure is,
P = kBT lnZ. (215)

The entropy is,

S =
∂

∂T
(TkB lnZ). (216)

7 Quantum Mechanics (12%)

Time-dependent Schrodinger Equation:

i~
∂Ψ
∂t

= − ~2

2m
∇2Ψ + VΨ. (217)

Time-independent Schrodinger Equation:

Eψ = − ~2

2m
∇2ψ + V ψ. (218)

The wavefunction Ψ can be factored into a spatial and time component,

Ψ(~x, t) = ψ(~x)ϕ(t). (219)

For a stationary state,
ϕ(t) = e−iEt/~. (220)

The squared wavefunction gives a probability distribution,∫
|Ψ(~x, t)|2d3x = 1. (221)

Thus, the expectation value of ~x is

〈~x〉 =
∫
~x|Ψ(~x, t)|2d3x. (222)

The expectation value of momentum ~p is

〈~p〉 =
∫
−i~Ψ∗∇Ψ. (223)
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From here, we see the expressions for the operators x̂ and p̂,

x̂ = x, (224)

p̂ =
h

i
∇. (225)

For a general operator Q̂,

〈Q〉 =
∫
d3xΨ∗Q̂Ψ ≡ 〈Ψ|Q̂|Ψ〉. (226)

Note that this 3-dimensional formalism simplifies to the 1-dimensional case in
the obvious way–simply replace the integral measure d3x with dx and replace
∇ with ∂

∂x . I will now switch over to 1-d.
The de Broglie wavelength λ of a particle with momentum p:

λ =
h

p
=

2π~
p
. (227)

The Heisenberg uncertainty principle:

σxσp ≥
~
2
. (228)

Stationary states ψn are states with definite total energy En. The general
solution to the time-dependent Schrodinger equation is,

Ψ(x, t) =
∞∑
n=1

cnψn(x)e−iEnt/~, (229)

where the {ψn} form an orthonormal basis of eigenstates of the Hamiltonian. cn
can be loosely thought of as “how much of ψn is in Ψ.” These constants satisfy

∞∑
n=1

|cn|2 = 1, (230)

cn = 〈ψn|Ψ〉, (231)
∞∑
n=1

En|cn|2 = 〈Ĥ〉 = 〈E〉. (232)

Q̂ is called Hermitian if
〈Q̂ψ|ψ〉 = 〈ψ|Q̂ψ〉. (233)

Observables are represented by Hermitian operators because Hermitian opera-
tors have only real eigenvalues. The spectrum of eigenvalues for an operator
may be either discrete or continuous. If it is discrete, eigenfunctions belong-
ing to distinct eigenvalues are orthogonal, and you may construct a complete,
orthonormal basis of eigenfunctions provided it is Hermitian.
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The conserved probability current density is given by

~j = Re(ψ∗
~
im
∇ψ). (234)

The momentum space wavefunction Φ(p, t) is related to the position space
wavefunction by Fourier transform,

Φ(p, t) =
1√
2π~

∫
e−ipx/~Ψ(x, t)dx, (235)

Ψ(x, t) =
1√
2π~

∫
eipx/~Φ(p, t)dp. (236)

In momentum space,

x̂ = i~
∂

∂p
(237)

p̂ = p. (238)

The commutator of two operators:

[Â, B̂] ≡ ÂB̂ − B̂Â. (239)

For momentum and position,
[x̂, p̂] = i~. (240)

The generalized uncertainty principle says,

σ2
Aσ

2
B ≥

(
1
2i
〈[Â, B̂]〉

)2

. (241)

Note that the expectation value of the commutator of two Hermitian operators
is always imaginary, so this is indeed non-negative. It is true that

d

dt
〈Q〉 =

i

~
〈[Ĥ, Q̂]〉+ 〈∂Q̂

∂t
〉. (242)

Assuming that Q̂ has no explicit time-dependence yields the time-energy uncer-
tainty principle:

σHσQ ≥
~
2
|d〈Q〉
dt
|. (243)

As long as we are dealing with finite values of the potential V , the wavefunc-
tion ψ is C1 continuous (i.e. ψ is continuous, ∂ψ

∂x is continuous. Contrariwise,
for the infinite square well,

V (x) = 0 , 0 ≤ x ≤ a
= ∞ , otherwise, (244)

the time-independent Schrodinger equation becomes

d2ψ

dx2
= −k2ψ , k =

√
2mE/~. (245)
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This yields solutions

ψn(x) =

√
2
a

sin(
nπx

a
) , n = 1, 2, 3, ..., (246)

with corresponding energy spectrum

En =
n2π2~2

2ma2
, n = 1, 2, 3, ... (247)

These solutions satisfy the orthogonality condition,∫ a

0

ψ∗mψndx = δmn. (248)

And,

cn =

√
2
a

∫ a

0

sin(
2πx
a

)Ψ(x, 0)dx. (249)

The quantum harmonic oscillator has potential

V =
1
2
kx2 =

1
2
mω2x2, (250)

where ω =
√

k
m . To solve the Schrodinger equation with this potential, we

introduce creation and annihilation operators,

â± =
1√

2~mω
(∓ip+mωx). (251)

The Hamiltonian may then be rewritten,

Ĥ = ~ω(a−a+ −
1
2

). (252)

The ground state is a Gaussian:

ψ0(x) =
(mω
π~

)1/4

e−
mω
2~ x

2
(253)

The set of eigenstates can then be built up from the ground state ψ0 by applying
the creation operator,

ψn(x) =
1√
n!

(a+)nψ0(x). (254)

The spectrum is evenly spaced,

En = (n+ 1/2)~ω , n = 0, 1, 2, ... (255)

The annihilation operator kills the ground state,

a−ψ0 = 0. (256)
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For the finite square well, there is always at least one bound state. This is not
true for the spherical finite square well, which need not have a bound state.

To solve the 3-d Schrodinger equation with a central potential, we use sepa-
ration of variables ψ(r, θ, φ) = R(r)Y (θ, φ) and arrive at the radial and angular
equations,

1
R

d

dr
(r2 dR

dr
)− 2mr2

~2
(V (r)− E) = l(l + 1), (257)

1
Y

(
1

sin θ
∂

∂θ
(sin θ

∂Y

∂θ
) +

1
sin2 θ

∂2Y

∂φ2

)
= −l(l + 1). (258)

The solutions to the angular equation are spherical harmonics,

Y ml (θ, φ). (259)

For m = 0, these spherical harmonics have no φ dependence. The solution to
the radial equation depends on the potential. For the spherical square well,
the solutions are Bessel functions. For the hydrogen atom potential, see §8 on
atomic physics.

Classically, angular momentum is given by ~L = ~r×~p. In quantum mechanics,
the operators of angular momentum similarly obey

L̂ = r̂ × p̂. (260)

These operators obey commutation relations,

[L̂x, L̂y] = i~Lz , [L̂y, L̂z] = i~Lx , [L̂z, L̂x] = i~Ly. (261)

The eigenvalues of L̂z are m~, where m = −l, ...,+l. The spherical harmonics
are eigenfunctions of both L̂z and L̂2,

L̂2Y ml = l(l + 1)~2Y ml , (262)

L̂zY
m
l = m~Y ml . (263)

In spherical coordinates,

L̂z =
~
i

∂

∂φ
. (264)

L̂2 commutes with each of the individual components of angular momentum,

[L̂2, L̂i] = 0. (265)

Spin operators Ŝi obey the same commutation relations,

[Ŝi, Ŝj ] = i~εijkŜk, (266)

[Ŝ2, Ŝi] = 0. (267)

For eigenstates |sm〉 of Ŝ2, Ŝz,

Ŝ2|sm〉 = s(s+ 1)~2|sm〉, (268)
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Ŝz|sm〉 = m~|sm〉. (269)

Here, s = 0, 1/2, 1, 3/2, ..., m = −s,−s + 1, ..., s − 1, s. Π0 mesons have spin
s = 0, electrons have spin 1/2, photons have spin 1, and gravitons have spin 2.
Bosons have integer spin and fermions have half-integer spin.

Spin 1/2 is the most important case. We pick a basis and define spinors,

χ+ =
(

1
0

)
, χ− =

(
0
1

)
, (270)

where χ+ corresponds to spin up and χ− corresponds to spin down. Then

Ŝ2χ± =
3
4

~2χ±, (271)

Ŝzχ± = ±~
2
χ±. (272)

The spin operators are related to the Pauli matrices in this basis, Ŝi = ~
2σi,

where

σx =
(

0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
. (273)

The eigenspinors of Ŝx in this basis are,

χ
(x)
± =

1√
2

(
1
±1

)
. (274)

The magnetic dipole moment for an electron in a magnetic field:

~µ = γ~S, (275)

where γ is the gyromagnetic ratio. The Hamiltonian for this system is

Ĥ = −µ̂ · ~B = −γ ~B · Ŝ. (276)

When you have two spin 1/2 particles A and B, the spins don’t sum in the
obvious way. Instead,

|11〉 = |1
2

1
2
〉A|

1
2

1
2
〉B (277)

|10〉 = |1
2

1
2
〉A|

1
2
− 1

2
〉B + |1

2
− 1

2
〉A|

1
2

1
2
〉B (278)

|1− 1〉 = |1
2

1
2
〉A|

1
2

1
2
〉B (279)

form the triplet states, and

|00〉 = |1
2

1
2
〉A|

1
2
− 1

2
〉B − |

1
2
− 1

2
〉A|

1
2

1
2
〉B (280)

is the singlet state. For two distinguishable particles,

ψ(r1, r2) = ψA(r1)ψB(r2). (281)
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But, for indistinguishable particles,

ψ(r1, r2) = N [ψA(r1)ψB(r2)± ψB(r1)ψA(r2)]. (282)

Here, N is a normalization constant, the + corresponds to bosons, and the
− corresponds to fermions. Note that for fermions, if ψA = ψB , then the
whole expression vanishes. This is the Pauli Exclusion Principle: two fermions
cannot occupy the same state. Identical bosons tend to be somewhat closer
together than distinguishable particles, and identical fermions tend to be farther
apart. This is called an “exchange” force. For hydrogen H2, the bonding state
is the antisymmetric spin-singlet state, hence the spatial part is symmetric,
hence electrons are closer together in the middle, pulling the protons inward
and creating a covalent bond.

Perturbation theory for a Hamiltonian H = H0 + λH ′ is done in a different
way depending on whether the spectrum of energies is degenerate or nondegen-
erate. In the nondegenerate case, we expand in the small parameter λ,

(H0+λH ′)[ψ0
n+λψ1

n+λ2ψ2
n+...] = (E0

n+λE1
n+λ2E2

n+...)[ψ0
n+λψ1

n+λ2ψ2
n+...].
(283)

This can be solved to give, to first order,

E1
n = 〈ψ0

n|H ′|ψ0
n〉, (284)

ψ1
n =

∑
m 6=n

〈ψ0
m|H ′|ψ0

n〉
E0
n − E0

m

ψ0
m. (285)

To second order,

E2
n =

∑
m6=n

|〈ψ0
m|H ′|ψ0

n〉|2

E0
n − E0

m

. (286)

In the degenerate case, in which each {ψi} has the same energy, if we define the
matrix

Wij = 〈ψ0
i |H ′|ψ0

j 〉, (287)

then the adjusted energies are, to first order, the eigenvalues of W .
Finally, we examine blackbody radiation. For light, m = ±1 but m 6= 0.

The most probable occupation number for photons is

Nω =
dk

e
~ω
kT − 1

, (288)

where dk = V
π2c3ω

2dω, and V is the volume of the blackbody. The energy
density in the frequency range dω is ρ(ω)dω, where

ρ(ω) =
~ω3

π2c3(e
~ω
kT − 1)

. (289)

The total energy density is
E

V
= σT 4. (290)

35



8 Atomic Physics (10%)

The potential for the hydrogen atom:

V (r) =
−e2

4πε0
1
r
. (291)

The effective potential is defined by,

Veff = V +
~2

2m
l(l + 1)
r2

. (292)

The energy spectrum for eigenfunctions of the Hamiltonian:

En = −
[
m

2~2
(
e2

4πε0
)2

]
1
n2
≡ E1

n2
. (293)

The Bohr radius:

a0 =
4πε0~2

me2
= 0.529× 10−10m. (294)

Here, E1 = −13.6 eV. In general, for hydrogen-like atoms, we replace e2 → Ze2,
where Z is the central charge. The mass m appearing in these equations is
actually the reduced mass µ for the system. Hence, if the proton in the center
is replaced by a positron, then m = 0.5me. The ground state wavefunction has
l = m = 0, n = 1, and

ψ100 =
1√
πa3

0

e−r/a0 . (295)

The energy of the photon released when an electron drops from an initial energy
state to a final energy state is the difference in energies,

Eγ = Ei − Ef = −13.6eV (
1
n2
i

− 1
n2
f

). (296)

In terms of the wavelength of the photon, this becomes

1
λ

= R(
1
n2
f

− 1
n2
i

), (297)

where R is the Rydberg constant. The Paschen series corresponds to nf = 3
and is in the IR range. The Balmer series corresponds to nf = 2 and is in the
visible range. The Lyman series corresponds to nf = 1 and is in the UV range.

From the above analysis, we would expect helium to have a ground state
energy of 8E1 = −109 eV. Once we include for shielding of the nucleus, however,
we find a true value of −79 eV. The ground state of helium is parahelium, which
means a spin singlet state with both electrons in the n = 1 state. Orthohelium
is the spin triplet state, which has an antisymmetric spatial part, so one electron
is in the n = 1 state and one is in the n = 2 state. In general, the energies
corresponding to the same n values are lower for the spin triplet state than for
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the singlet state, because exchange forces lead the electrons to be farther apart
in the triplet state.

Knowing the n, l,m values of an electron tells you the orbital of the electron.
There are two electrons per orbital, one for spin up and one for spin down. There
are n2 wavefunctions for any particular n, hence 2n2 electrons per n. We have
n = 1, 2, 3, ..., l = 0, ..., n − 1, and m = −l,−l + 1, ..., l − 1, l. l = 0 is given
the letter “s,” l = 1 is given the letter “p”, l = 2 is “d,” then f, g, h, (skip j)
i, k, l, ... As l increases, the electrons screen the nucleus more effectively. So, the
state with the lowest energy and most tightly bound electron is l = 0. As n
increases, Z increases, so there is more pull on the electrons.

The electron configuration of carbon, which has 6 electrons, is (1s)2(2s)2(2p)2.
In general, the orbitals fill up in the order of 1s, 2s, 2p, 3s, 3p, 4s, 3d, 4p, 5s,
4d, 5p, 6s, 4f, 5d, 6p, 7s, and so on. The symbol people made up for the state
of an atom is,

2S+1LJ , (298)

where ~J = ~L+ ~S is the total angular momentum. For instance,

H = 2S1/2 , He = 1S0. (299)

For two electrons, L = |l1 − l2|, ..., l1 + l2, S = |s1 − s2|, ..., s1 + s2, and J =
|L− S|, ..., L+ S.

Hund’s Rules tell electrons how to fill up the orbitals. They are,

1. The state with the highest total spin will have the lowest energy.

2. If more than one state has that spin, the ground state is one with the
greatest energy.

3. If a subshell is less than half-filled, the one with lowest J is the ground
state. If it is more than half-filled, the one with the highest J is the ground
state.

Selection rules tell which electron transistions are allowed. For dipoles:

∆J = 0,±1 , J 6= 0→ 0 , ∆mJ = 0,±1. (300)

For electric dipole transitions,
∆l = ±1. (301)

For magnetic dipole transitions,

∆l = 0. (302)

Furthermore, if ∆S = 0, then for an electric dipole transition

∆L = 0,±1 , L 6= 0→ 0, (303)

and for a magnetic dipole,
∆L = 0. (304)
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If ∆S = ±1, then ∆L = 0,±1,±2.
The fine structure constant is given by α = e2

4πε0~c ≈
1

137 . The fine structure
splitting of the hydrogen atom, which is due to coupling of the spin of the
electron to the orbit of the electron as well as relativistic effects, is handled using
perturbation theory and gives an O(α2) correction to the energy eigenvalues.
For this correction, we must use eigenstates of total angular momentum Ĵ2 and
Ĵz rather than eigenstates of L̂z and Ŝz. Taking the fine structure into account
always lowers the energy values, with lower j corresponding to lower energy. To
be explicit,

Enj =
E1

n2
[1 +

α2

n2
(

n

j + 1/2
− 3/4)]. (305)

Note that j = |l − 1/2|, |l + 1/2|, so each energy level for l > 0 is split in two
by the fine structure. The Lamb shift gives an O(α3) correction to the energies,
and the hyperfine splitting gives an O(α4) correction. Hyperfine splitting is due
to coupling of the electron spin with the proton spin, and is positive for the spin
triplet state, negative for the spin singlet state:

E1
hf = gp~4

3mpm2
ec

2a4
0
, triplet

= − gp~4

mpm2
ec

2a4
0
, singlet.

(306)

Here, gp ≈ 5.59 for the proton’s gyromagnetic ratio.
The Stark effect describes the physics of an atom in an electric field Ĥ ′ =

eEẑ. For a hydrogen atom in the ground state, the first-order correction to the
energy vanishes. The second-order correction is,

E2
1 =

∑
n 6=1,l,m

|〈nlm|eEz|100〉|2

E1 − En
. (307)

The Zeeman effect describes the physics of an atom in a magnetic field,
H ′z = −(~µl + ~µs) · ~B, where

~µs = − e

m
~S , ~µl = − e

2m
~L. (308)

For the weak-field case, we want eigenstates of Ĵ2 and Ĵz, and

E1
z =

e

2m
~B · 〈~L+ 2~S〉 =

e

2m
~B · 〈 ~J〉

[
1 +

j(j + 1)− l(l + 1) + 3/4
2j(j + 1)

]
. (309)

This splits the ground state into two levels for mj = ±1/2. For the strong-field
case, we want eigenstates of L̂z and Ŝz, and

E′z = µBB(ml + 2ms), (310)

where µB ≡ e~
2m is the Bohr magneton.

As we head left and down on the periodic table, atomic size increases, ion-
ization energy (energy required to remove the outermost electron) decreases,
and electron affinity (ease of gaining electrons) decreases.
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9 Special Relativity (6%)

∆s2 = −c2∆t2 + ∆x2 + ∆y2 + ∆z2 = ∆s′2 (311)

is a Lorentz-invariant distance. We may define γ =
√

1
1−(v/c)2 for a particle

moving at speed v. Time dilation:

τ = γt. (312)

Here τ is the proper time, which is the time measured by a clock in the particle’s
rest frame. Remember that “moving clocks appear to tick slowly.”

Length contraction:

L′ =
L

γ
. (313)

Here, L is the proper length of the object, as measured in its rest frame. Re-
member that “moving rods appear shorter.” Note that length contraction occurs
only along the direction of motion: perpendicular distances are unaltered.

Lorentz transformation for motion at velocity v:

t′ = γ(t± vx

c2
), (314)

x′ = γ(x± vt). (315)

Note that the ± is the same for both time and position. To figure out which
sign should be used, consider the Newtonian limit for position. This tells you
the sign for time.

Einstein’s famous formula generalizes to

E = γmc2 = γErest =
√
p2c2 +m2c4. (316)

To lowest order in v, this gives the Newtonian limit,

E = mc2 +
1
2
mv2. (317)

The four-vector for momentum:

pν = (E/c, px, py, pz). (318)

Here, pi = γmvi. The fource four-vector:

Fν =
dpν
dτ

. (319)

Simultaneity is relative to the observer. A and B are simultaneous events with
respect to observer O if light rays emitted from A and B will reach O at the
same time. If ∆x′ is the distance between events in the simultaneous frame,
then

∆t = γ(v/c2)∆x′ (320)
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gives the time difference between the events in a frame moving with velocity v
in the x′ direction relative to the simultaneous frame.

Two parallel velocities v and u sum according to

s =
v ± u
1± vu

, (321)

in units where c = 1. Note that this formula maintains the speed limit of 1 in
these units.

The relativistic Doppler effect for motion parallel to the propagation of light:

ωobs = ωem

√
1± v/c
1∓ v/c

. (322)

The sign can be determined in the usual way–if the observer and emitter are
heading toward each other, there is a blueshift, and ωobs > ωem. If they are
moving apart, the light is redshifted, and ωobs < ωem.

10 Miscellaneous (15%)

This section involves both “laboratory methods” and “specialized topics” such
as nuclear and particle physics.

One important rule of thumb: the weak force/interaction is just about always
the culprit. This is because the weak force doesn’t conserve lepton flavor. So
whenever the question asks, “Which force is responsible for this decay process?”
you should probably answer “weak force.”

Compton scattering is the process by which an incoming light ray is scattered
by an electron. The change in wavelength is,

λf − λi =
2π~
mec

(1− cos θ), (323)

where θ = 0 corresponds to no change in direction of the light ray. The pho-
toelectric effect describes the release of an electron from a metal when struck
by a photon. Einstein’s equation relating the maximum kinetic energy of the
released electron Kmax to the stopping potential V0 to the frequency ν of the
photon is,

Kmax = eV0 = hν − φ, (324)

where φ is the work function. Some strange facts about the photoelectric effect
that helped lead to a better understanding of quantum mechanics were:

1. Rate of ejection is proportional to intensity of light.

2. There is a minimum frequency below which no photoelectron emission
occurs.

3. The maximum kinetic energy of the electron is independent of intensity.
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During solid formation, energy levels of outer shell electrons get split up
into many closely-packed energy levels and form bands. The current-carrying
electrons in the conduction band are called free electrons. In insulators, the
conduction band and valence band are very far apart. In conductors, the two
bands overlap, and electrons move freely in a solid like an ideal gas. In n-type
semiconductors, dopant atoms provide extra conduction electrons. In p-type
semiconductors, dopant atoms steal extra conduction electrons. The Fermi en-
ergy for a p-type semiconductor is lower and closer to the valence energy band.
The Fermi energy for an n-type semiconductor is higher and closer to the conduc-
tion energy band. p-type and n-type semiconductors can be brought together,
creating a depletion region. In p-type semiconductors, dopant atoms steal ex-
tra conduction electrons. Semiconductors involving dopants are called extrinsic
semiconductors, whereas intrinsic semiconductors are free from impurities.

If there is no electric field applied, free electrons move in random directions.
If an external E-field is applied, the average drift velocity is,

vd =
−eEt
m

, (325)

where t is the average scattering time. The Wiedemann-Franz law relates the
thermal conductivity κ, the electrical conductivity σ, the Lorenz number L, and
the temperature T ,

κ

σ
= LT. (326)

The Wiedemann-Franz law fails at low T .
Superconductivity is the phenomenon of zero electrical resistance occuring in

some materials below a characteristic energy. The Meissner effect is the complete
expulsion of a magnetic field from a superconductor during its transition to the
superconducting state (χM = −1). There are two types of superconductors,
type I involve a first-order phase transition and type II involve a second-order
phase transition. All high temperature superconductors are type II, and are
usually made of metal alloys or ceramics. Cooper pairs are formed when two
electrons (or other fermions) bind together at low T to become bosons. A pair
is bound if and only if the energy is lower than the Fermi energy. Cooper pairs
are responsible for superconductivity. In conventional superconductors, the pair
is due to electron-phonon interactions (interaction with ionic lattice).

In quantum chromodynamics (QCD), momentum, energy, and charge are
conserved. Lepton flavor is conserved, where the six flavors of leptons are tauon,
electron, muon, and one each for their corresponding neutrinos. The number
of leptons and the number of baryons are conserved, and quarks have baryonic
number 1/3. Antiparticles have equal magnitude but opposite sign of flavor
numbers. The weak interaction does not conserve each of the six flavor numbers,
but the number in each family (muon, tauon, electron) is conserved.

When a charge accelerates, it radiates, with Poynting vector

~S(R, θ) =
q2

4πc3R2
sin2 θ|~̈x|n̂, (327)
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where θ is the angle with respect to the direction of propagation. The total
power is,

P =
2
3
q2|~̈x|2

c3
. (328)

The Auger effect describes the process by which an electron from a higher
energy level drops into a lower energy level and kicks another electron out. Beta
decay happens via the weak interaction,

energy + p→ n+ e+ + νe, (329)

or,
n→ p+ e− + ν̄e. (330)

Electron capture:
energy + p+ e− → n+ νe. (331)

Protons consists of two up quarks and one down quark, while neutrons consist
of one up and two downs.

If a U-tube is filled with water on the right and mercury on the left, then
the height of the mercury L, the difference in heights between the left and right
arm d, the density of water ρw, and the density of mercury ρm are related by,

ρw
ρm

=
L

L+ d
. (332)

For cosmic microwave background radiation, distance is proportional to tem-
perature, which is proportional to redshift.
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